p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.106D4, C8.5(C4⋊C4), (C2×C8).11Q8, C8⋊C4.6C4, (C2×C8).109D4, C4.47(C4⋊Q8), C22.2(C4⋊Q8), C23.84(C2×Q8), (C22×C4).46Q8, C4.47(C4⋊1D4), C42.145(C2×C4), C2.10(C42⋊9C4), C4⋊M4(2).30C2, (C2×C42).260C22, (C22×C8).221C22, (C22×C4).1348C23, C2.10(M4(2).C4), (C2×M4(2)).170C22, C4.38(C2×C4⋊C4), (C2×C8).64(C2×C4), (C2×C8⋊C4).5C2, (C2×C4).49(C4⋊C4), (C2×C4).733(C2×D4), (C2×C4).198(C2×Q8), C22.107(C2×C4⋊C4), (C2×C8.C4).12C2, (C2×C4).547(C22×C4), SmallGroup(128,581)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.106D4
G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1, ab=ba, cac-1=ab2, dad-1=a-1b2, bc=cb, bd=db, dcd-1=c3 >
Subgroups: 156 in 106 conjugacy classes, 68 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C8⋊C4, C4⋊C8, C8.C4, C2×C42, C22×C8, C2×M4(2), C2×C8⋊C4, C4⋊M4(2), C2×C8.C4, C42.106D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C4⋊C4, C4⋊1D4, C4⋊Q8, C42⋊9C4, M4(2).C4, C42.106D4
(1 40 27 16)(2 37 28 13)(3 34 29 10)(4 39 30 15)(5 36 31 12)(6 33 32 9)(7 38 25 14)(8 35 26 11)(17 43 55 58)(18 48 56 63)(19 45 49 60)(20 42 50 57)(21 47 51 62)(22 44 52 59)(23 41 53 64)(24 46 54 61)
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 19 21 23)(18 20 22 24)(25 31 29 27)(26 32 30 28)(33 39 37 35)(34 40 38 36)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47 3 45 5 43 7 41)(2 42 4 48 6 46 8 44)(9 50 11 56 13 54 15 52)(10 53 12 51 14 49 16 55)(17 34 23 36 21 38 19 40)(18 37 24 39 22 33 20 35)(25 64 27 62 29 60 31 58)(26 59 28 57 30 63 32 61)
G:=sub<Sym(64)| (1,40,27,16)(2,37,28,13)(3,34,29,10)(4,39,30,15)(5,36,31,12)(6,33,32,9)(7,38,25,14)(8,35,26,11)(17,43,55,58)(18,48,56,63)(19,45,49,60)(20,42,50,57)(21,47,51,62)(22,44,52,59)(23,41,53,64)(24,46,54,61), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,19,21,23)(18,20,22,24)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47,3,45,5,43,7,41)(2,42,4,48,6,46,8,44)(9,50,11,56,13,54,15,52)(10,53,12,51,14,49,16,55)(17,34,23,36,21,38,19,40)(18,37,24,39,22,33,20,35)(25,64,27,62,29,60,31,58)(26,59,28,57,30,63,32,61)>;
G:=Group( (1,40,27,16)(2,37,28,13)(3,34,29,10)(4,39,30,15)(5,36,31,12)(6,33,32,9)(7,38,25,14)(8,35,26,11)(17,43,55,58)(18,48,56,63)(19,45,49,60)(20,42,50,57)(21,47,51,62)(22,44,52,59)(23,41,53,64)(24,46,54,61), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,19,21,23)(18,20,22,24)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47,3,45,5,43,7,41)(2,42,4,48,6,46,8,44)(9,50,11,56,13,54,15,52)(10,53,12,51,14,49,16,55)(17,34,23,36,21,38,19,40)(18,37,24,39,22,33,20,35)(25,64,27,62,29,60,31,58)(26,59,28,57,30,63,32,61) );
G=PermutationGroup([[(1,40,27,16),(2,37,28,13),(3,34,29,10),(4,39,30,15),(5,36,31,12),(6,33,32,9),(7,38,25,14),(8,35,26,11),(17,43,55,58),(18,48,56,63),(19,45,49,60),(20,42,50,57),(21,47,51,62),(22,44,52,59),(23,41,53,64),(24,46,54,61)], [(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,19,21,23),(18,20,22,24),(25,31,29,27),(26,32,30,28),(33,39,37,35),(34,40,38,36),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47,3,45,5,43,7,41),(2,42,4,48,6,46,8,44),(9,50,11,56,13,54,15,52),(10,53,12,51,14,49,16,55),(17,34,23,36,21,38,19,40),(18,37,24,39,22,33,20,35),(25,64,27,62,29,60,31,58),(26,59,28,57,30,63,32,61)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H | 8I | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | Q8 | Q8 | M4(2).C4 |
kernel | C42.106D4 | C2×C8⋊C4 | C4⋊M4(2) | C2×C8.C4 | C8⋊C4 | C42 | C2×C8 | C2×C8 | C22×C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 8 | 2 | 4 | 4 | 2 | 4 |
Matrix representation of C42.106D4 ►in GL6(𝔽17)
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 0 | 0 | 0 | 8 | 0 |
16 | 7 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,8,0,0,0,0,8,0],[16,7,0,0,0,0,7,1,0,0,0,0,0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,8,0,0,0,0,8,0,0,0] >;
C42.106D4 in GAP, Magma, Sage, TeX
C_4^2._{106}D_4
% in TeX
G:=Group("C4^2.106D4");
// GroupNames label
G:=SmallGroup(128,581);
// by ID
G=gap.SmallGroup(128,581);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,723,100,2019,248,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations